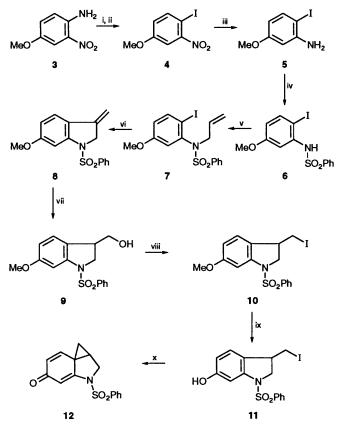
Concise Synthesis of CC-1065/Duocarmycin Pharmacophore Using the Intramolecular Heck Reaction

Takao Sakamoto,* Yoshinori Kondo, Masanobu Uchiyama and Hiroshi Yamanaka Pharmaceutical Institute, Tohoku University, Aobayama, Aoba-ku, Sendai 980, Japan

3-Methyleneindoline derivatives were synthesized by intramolecular Heck reaction of N-allyl-2iodoaniline derivatives in the presence of Ag_2CO_3 . This method was successfully applied to the synthesis of the CC-1065/duocarmycin pharmacophore.


CC-1065¹ and duocarmycin A,² have received much attention as potent antitumour antibiotics. They contain a common pharmacophore which consists of a spirocyclic 1,2,7,7a-tetrahydrocyclopropa[c]indol-4-one (CI) subunit. The pharmacophore³ and related analogues⁴ have been synthetic targets for chemists in connection with the mechanism of the antitumour activity. 3-Methyleneindoline derivatives have been used as key intermediates for the construction of the cyclopropane ring, and they have been prepared by reductive aryl radical-alkyne cyclization.⁵

On the other hand, Mori⁶ and Hegedus⁷ reported facile synthesis of 3-substituted alkylindoles using the intramolecular Heck reaction,⁸ with 3-alkylideneindoline derivatives considered to be the intermediates. Recently Ag_2CO_3 and other Ag salts have been used in the Heck reaction to avoid the isomerization of the double bond caused by HPdX species.⁹

In order to develop a new preparative method for 3methyleneindoline derivatives, we investigated the MoriHegedus indole synthesis in the presence of Ag_2CO_3 and other bases. *N*-Allyl-2-iodo-*N*-phenylsulfonylaniline 1 was subjected to a palladium-catalysed intramolecular coupling reaction in the presence of Ag_2CO_3 in dimethylformamide (DMF) at room temperature. As shown in Scheme 1, the 3-methyleneindoline derivative 2 was obtained without isomerization to the 3methylindole derivative. The amount of Ag_2CO_3 and the reaction time slightly influenced the yield of 2. Employing other bases, such as Et_3N and K_2CO_3 , gave a mixture of 2 and the 3-methylindole derivative.

Scheme 1 Reagents and conditions: i, $Pd(OAc)_2$, PPh_3 , Ag_2CO_3 , DMF, room temp.

Scheme 2 Reagents and conditions: i, aq. HCl, NaNO₂; ii, Kl (89%); iii, NH₂NH₂, FeCl₃, MeOH, reflux, 4 h; iv, PhSO₂Cl, pyridine, room temp., 6 h (88% from 4); v, allyl bromide, K₂CO₃, DMF, 80 °C, 48 h (96%); vi, Pd(OAc)₂, PPh₃, AgCO₃, DMF, room temp., 24 h (73%); vii, 9-BBN, THF, 0 °C, 6 h, then H₂O₂, NaOH, room temp., 6 h (90%); viii, I₂, PPh₃, imidazole, room temp., 30 min (79%); ix, BBr₃, CH₂Cl₂, 20 °C, 75 h (97%); x, NaH, THF, room temp., 1 h (85%)

Table 1 Cyclization of 1 to 2 by palladium-catalysed reaction

Run	Ag_2CO_3 (equiv.)	Reaction time (t/h)	Yield (%)
1	1	24	50
2	1	48	35
3	1.5	24	56
4	1.5	12	57
5	1.5	6	65
6	2	5	80

Our interest was then focussed on the synthesis of the pharmacophore (CI) subunit using this cyclization reaction as the key step. The substrate 7 for the Heck reaction was synthesized from 4-methoxy-2-nitroaniline 3 which was converted into the iodo derivative 4 via diazotization followed by reduction of the nitro group to an amino group by hydrazine in the presence of FeCl₃. The iodoaniline 5 was treated with benzenesulfonyl chloride to give the sulfonamide 6 which was treated with allyl bromide in the presence of K_2CO_3 in DMF. The desired substrate 7 was obtained in 75% overall yield from compound 3.

The intramolecular Heck reaction of substrate 7 in the presence of 2 equiv. of Ag_2CO_3 gave the 3-methyleneindoline derivative 8 exclusively in 73% yield. Hydroboration of the alkene 8 followed by oxidation gave the alcohol 9 which was converted into the iodo derivative 10 by treatment with I_2 , PPh₃ and imidazole. Demethylation of 10 was carried out with BBr₃ in CH₂Cl₂ at -20 °C. The final cyclization to give the cyclopropa[c]indol-5-one subunit 12 was achieved by treatment of the hydroxyiodomethylindoline derivative 11 with NaH in tetrahydrofuran (THF) at room temperature.

Experimental

3-Methylene-1-phenylsulfonylindoline 2.—A mixture of compound 1 (0.43 g, 1.08 mmol), $Pd(OAc)_2$ (7 mg, 0.03 mmol), PPh_3 (8 mg, 0.06 mmol), Ag_2CO_3 (0.6 g, 2.08 mmol) and DMF (2 cm³) was stirred at room temp. for 5 h. After dilution with Et_2O (60 cm³), the reaction mixture was filtered, washed with water and brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residual material was purified by silica gel column chromatography using hexane–Et₂O (4:1) as eluent to give a colourless solid which was recrystallised from Et₂O to give colourless needles (237 mg, 80%); m.p. 117–119 °C (Found: C, 66.15; H, 4.9; N, 5.05. $C_{15}H_{13}NO_2S$ requires C, 66.40; H, 5.16; N, 5.16%); $\nu_{max}(KBr)/cm^{-1}$ 1360 and 1165; $\delta_{H}(300$ MHz; CDCl₃) 4.55 (2 H, t, J2.9), 4.98 (1 H, t, J2.6), 5.37 (1 H, t, J 2.9), 7.01 (1 H, t, J7.7), 7.27–7.21 (1 H, m), 7.34 (1 H, d, J 7.7), 7.44 (2 H, t, J7.0), 7.54 (1 H, d, J7.3), 7.73 (1 H, d, J8.4) and 7.79 (2 H, d, J7.0); m/z 271 (M⁺, 11%).

References

- 1 L. J. Hanka, A. Dietz, S. A. Gerpheide, S. L. Kuentzel and D. G. Martin, J. Antibiot., 1978, 31, 1211.
- 2 I. Takahashi, K. Takahashi, M. Ichimura, M. Morimoto, K. Asano, I. Kawamoto, F. Tomita and H. Nakano, J. Antibiot., 1988, 41, 1915.
- D. L. Boger, T. Ishizaki, H. Zarrinmayeh, P. A. Kitos and O. Suntornwat, J. Org. Chem., 1990, 55, 4499.
 4 (a) J. H. Tidwell and S. L. Buchwald, J. Org. Chem., 1992, 57, 6380;
- 4 (a) J. H. Tidwell and S. L. Buchwald, J. Org. Chem., 1992, 57, 6380;
 (b) D. L. Boger and M. S. S. Palanski, J. Am. Chem. Soc., 1992, 114, 9318;
 (c) D. L. Boger, W. Yun and B. R. Teegarden, J. Org. Chem., 1992, 57, 2873.
- 5 D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1988, 110, 4796.
- 6 M. Mori and Y. Ban, Tetrahedron Lett., 1979, 1133.
- 7 R. Oddle, B. Blevins, M. Ratcliff and L. S. Hegedus, J. Org. Chem., 1980, 45, 2709.
- 8 (a) R. F. Heck, Org. React., Wiley, New York, 1982, vol. 27, p. 345; (b) B. M. Trost and T. R. Verhoeven, Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, vol. 8, p. 854; (c) R. F. Heck, Palladium Reagents in Organic Syntheses, Academic Press, New York, 1985; (d) For recent application of intramolecular Heck reaction in the synthesis of heterocycles see: R. Grigg, V. Sridharan, P. Stevenson, S. Sukirthalingam and T. Worakan, Tetrahedron, 1990, 46, 4003; R. Grigg, V. Sridharan, P. Stevenson and S. Sukirthaligam, Tetrahedron, 1989, 45, 3557 and references cited therein.
- 9 (a) R. C. Larock, Pure Appl. Chem., 1990, 62, 653; (b) M. M. Abelman, T. Oh and L. E. Overman, J. Org. Chem., 1987, 52, 4130; (c) M. M. Abelman and L. E. Overman, J. Am. Chem. Soc., 1988, 110, 2328; (d) K. Karabelas and A. Hallberg, J. Org. Chem., 1986, 51, 5286; (e) K. Karabelas and A. Hallberg, J. Org. Chem., 1989, 54, 1773.

Paper 3/03515H Received 18th June 1993 Accepted 13th July 1993